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SUMMARY 

Random-coiled conformation of poly(L-valine), which has 8-branched 
side-chain, was theoretically analyzed by a conformational energy calcula- 
tion based on intra-residue interactions. Calculated characteristic ra- 
tio 9.59 was obtained by using the transformation matrix statistically 
averaged over the entire side-chain conformational space of L-Val residue. 
This value is smaller than those of poly(L-phenylalanine)(11.24) and poly- 
(L-tyrosine) (12.33) but larger than that of poly(L-leucine) (7.62). The 
obtained results indicate that the overall stability of the backbone con- 
formation is the essential factor affecting the characteristic ratios but 
the position of side-chain branching is not so important for the charac- 
teristic ratio. 

INTRODUCTION 

Theoretical analysis[l-3] of the random-coiled conformation of non-B- 
branched polypeptide chains such as poly(L-phenylalanine), poly(L-tyro- 
sine), poly(L-glutamine), poly(L-glutamic acid) and poly(L-leucine) using 
ECEPP(Empirical Conformational Energy Program for Peptides)[4] has shown 
that the characteristic ratios of polypeptide chains are not decided by 
the position of side-chain branching, but essentially decided by the side- 
chain/backbone interactions followed by the nature of side-chain group. 
That is, the characteristic ratios of poly(L-phenylalanine) and poly(L- 
tyrosine) (ii.24 and 12.33, respectively) [i] are larger than that of poly- 
(L-leucine) (7.62) [3] although these polypeptides are composed of y- 
branched side-chains. The difference of the characteristic ratios is 
caused by the difference of side-chain groups attaching to C7-atom. L- 
Phe and L-Tyr residues have aromatic groups, but ~-Leu residue has two 
methyl groups. Then, rotational states around C -C Y bond are different 
between the former and latter residues(six- and three-fold rotations, 
respectively). Theoretical results[l] indicate that E conformation of L- 
Phe and L-Tyr residues is favorable conformation which is stabilized by 
the side-chain/backbone interactions correlated with the aromatic side- 
chain group, and hence poly(L-phenylalanine) and poly(L-tyrosine) have 
large characteristic ratios. Moreover, theoretical results[3] also indi- 
cate that C, D and A conformations of L-Leu residue are relatively stabi- 
lized by the side-chain/backbone interactions correlated with the two 
methyl groups attached to cY-atom, and hence poly(L-le~cine) has small 
characteristic ratio. L-Val r~sidue has a branch at C -atom, therefore 
two methyl groups attached to C ~-atom situate in a close range of backbone 
atoms i.. comparison with two methyl groups attached to CY-atom of L-Leu 
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Energy contour (XI,X 2'I) maps of the L-Val residue for the 

specified backbone conformations and X2'2=60 ~ at 15 ~ 

inte[val. The contour lines are labeled as energy in kcal 

mol-- above the minimum e~rgy point. The dashed lines 

indicate the 0.5 kcal mol energy contour lines. 

(a) E conformation (},~)= 

(b) F conformation (r 

(c) D conformation (~,~)= 

(d) C conformation (},~)= 

(e) A conformation (9,~)= 

(f) A'conformation (#,~)= 

l l  

-154~ ~ ) with Emin=-l.012 kcal mol_? 

-69~ ~ with E =-0.033 kcal mOl_l 
-135 ~ , 40 ~ ) with E mln �9 = 1.428 kcal mOl_l 
-88 ~ , 98 ~ ) with E mln 1 �9 =- .692 kcal mOl_l 

E mln 0 -83~ ~ with �9 =- .790 kcal mOl_l 
56 ~ , 75 ~ ) with E mln �9 = 1.667 kcal mol 

mln 

180 

residue. It is supposed that the side-chain/backbone interactions of L- 

Val residue are more characteristic than those of L-Leu residue, and also 

that energetically favorable regions of L-Val residue are fairly different 

from those of L-Leu residue. 

In this work, the side-chain and backbone conformations of poly(L- 
valine) were theoretically analized based on the intra-residue interac- 

tions. Moreover, the characteristic ratio of poly(L-valine) was calcu- 

lated by averaging the chain conformation over the entire (~,~,X I) space. 

THEORETICAL 

The nomenclature and conventions adopted are those recomended by an 
IUPAC-IUB nomenclature commision[5]. Assumptions and definitions used 
in this work are the same as those used in the previous works[l-3] . Con- 

formational Energy E' (~i'~''X~)1 of residue i was calculated for a model 
single-residue pepti~e wit~ two blocking end groups, acetyl- and N- 
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Table I. Characteristic Ratio of Poly(L-valine) for the 

Specified Side-Chain Conformations. 

X I ~E(kcal mol-1) a <R 2> /nl 2 

180 0.000 12.27 
60 0.815 210.1 

165 i. I17 5.89 
75 1.287 21.67 

-60 1.668 35.78 

-75 2.163 14.93 
-165 2.355 18.44 

45 2.784 152.4 

AE=E-E . ; E =-1.642 kcal mol -I for (~,~,XI)=(-90~176176 
mln mln 

and E is the lowest energy in (~,~) space for each specified X 1 . 

methylamide(i.e., Ac-L-VaI-NHMe). All interactions in this model peptide 

are refered to as the intra-residue interactions. The partition function 

Z. of the i-th residue is calculated by equation (i) of ref 1 (or ref 3) 
l . . . . .  

wlth the conformatlonal energy E. based on the intra-resldue interactlons. 

The statistically averaged transformation matrix <T > and the characteris- 
tic ratio <R2> /nl 2 are obtained by equations (39 and (5) of ref 1 (or 

equations (2) ~ (3) of ref 3). 
Conformational energy calculations were carried out for Ac-L-VaI-NHMe 

using the energy function of ECEPP[4]. The backbone dihedral angles (4, 
4) were changed at 15 ~ intervals, and all other backbone dihedral angles 
were fixed at 180 ~ . The side-chain dihedral angle X 1 of L-Val residue 

was also changed at three kinds of intervals, i.e., 15 ~ , 30 ~ and 120 ~ , and 
(X 2'I, X 2'2) of L-Val were fixed at 60 ~ . 

RESULTS AND DISCUSSION 

The conformational energies of Ac-L-VaI-NHMe were calculated at 15 ~ 
intervals of two side-chain dihedral angles X 1 and X 2'I with X2'2=60 ~ and 

fixing the backbone conformation at one of the following single-residue 
minimum conformations specified by (~,~)=(-154~176 (-69~176 
(-135o,40~ (-88~176 (-83~ ~ and (56~ ~ with the letter codes 
[6], E, F, D, C, A and A*, respectively. The calculated (XI,x 2'I) energy 

contour maps are shown in Figurell. F and D conformations have three 
local minima with AE<3 kcal mol around XI=I80 ~ -60 ~ and 60 ~ . However, 
rotational states XI=I80 ~ and -60 ~ of E conformation is unstable because 

of the repulsive interaction between H-atom of methyl group and O-atom of 
acetyl group. For C, A and A* conformations, XI=I80 ~ is the only energe- 
tically allowed conformation, xl=-60~ 60 ~ of C and A conformations 
are unstable ones with AE=8~I7 kcal mol . EspeciallYLlthose of A* con- 
formations are fairly unstable ones with AE<50 kcal mol because of the 
favorable repulsive interaction between O-atom of acetyl group and H-atom 
of methyl group at u and yA-positions for XI=60 ~ and -60 ~ respectively. 
Energetically favorable regions exist around X2'I=-180 ~ -60 ~ and 60 ~ and 

they are independent of backbone Conformations. 
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Figure 2. Energy contour (~,~) maps of the L-Val residue for the 

s p e c i f i e d  s i d e - c h a i n  c o n f o r m a t i o n s  a n d  X 2 ' l = x 2 ' l = 6 0  ~ 
at 15 ~ interval. 

-i 
(a) X I= 165 ~ with E . =-0.525 kcal mol 

(b) X I= 180 ~ with Em~n=-l'642mln keel mol~ 

(c) XI=-165 ~ with E . = 0.713 kcal mol 
1 mln 

(d) X I= -75 ~ with E . = 0.521 kcal mol 
mln 1 

(e) X I= -60 ~ with E . = 0.026 kcal mol- I_ 
mln 

(f) X I= 45 ~ with E . = 1.142 kcal mol 
1 mln 

(g) X I= 60 ~ with E . =-0.827 kcal mol 
m• 

(h) X I= 75 ~ with E . =-0.355 kcal mol -I 
mln 

180 

180 

The ($,~) energy contour maps of L-Val residue fixing X 1 at one of 

the value of 15 ~ intervals were calculated. For eight values of X I, the 

lowest energy in the (~,~) sp~ce for each specified X 1 of the 15 ~ interval 

was found with AE<3 kcal mol (AE=E-E . , E is the lowest energy in the 
mln 
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(#,~) space for each specified X 1 of the 15 ~ interval and E . is the 
global minimum of the 15 ~ grid in the (#,~,X I) space.) AITInxI and AE of 

them are listed in Table I and the energy-contour (~,~) maps are shown in 

Figure 2. The (~,~) maps fixing X 1 around 180 ~ indicate that both of the 
extended and s-helical conformations are favorable. On the contrary, the 
extended conformations are only favorable for the specified side-chain 

conformations around XI=-60 ~ and 60 ~ . That is, the energy difference of 
the local.minima between the extended and ~-helical regions are almost 5 

kcal mol -• for XI=-60 ~ and 60 ~ . Figure 2 explicltely shows that the en- 
ergetically favorable regions of the L-Val residue are more restricted 
than those of the L-AIa {~sidue[l], and that the shape of the contour 
lines with AE=I kcal mol are affected by the small change of XI(•176 
The calculated characteristic ratios(12.27, 5.89 and 18.44) for the parti- 
cular side-chain conformations(xl=180 o, 165 ~ and -165 ~ ) indicate that 
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Figure 3. Energy contour (},~) map of L-Val residue averaged over 
X 1 at 15 ~ interval with X2'I=X2'2=60 ~ 

characteristic ratios are very sensitive for the side-chain conformation. 

The low-energy regions of the extended conformations with XI=165 ~ are re- 

stricted to more narrow region than those of L-AIa residue, however, the 

minimum energy of e-helical conformation withxl=165 ~ is lower than that of 

L-AIa residue. Therefore, the calculated characteristic ratio of poly- 

(L-valine) with XI=165 ~ is smaller than that of poly(L-alanine). As shown 

in Figure 2, the only extended conformation is stable for the case of X I= 

-60 ~ and 60 ~ , but both of the extended and e-helical conformations are 

stable for X!=I80 ~ Therefore, the calculated characteristic ratios of 

the former ones are larger than that of the latter one(Table I). 

In Figure 3, the energy contour map of the backbone conformation of 

the L-Val residue averaged over the side-chain conformation X 1 at 15 ~ in- 

terval is shown. A comparison with the results for the alanine-type re- 

sidues, which have not branches at B-carbon atom(i.e., L-Ala[l], L-Phe[l], 

L-Tyr[l], L-GIn[2], L-GIu[2] and L-Leu[3]), shows that e~ergetically fa- 

vorable regions of the L-Val residue with ~E<I kcal mol are more re- 
stricted to narrow regions than those of the alanine-type residues, but 

that A conformation of the L-Val residue are more stabilized than those of 

the L-Phe and L-Tyr residues. The (~,~) energy contour maps of the L-Val 

residue averaged over X 1 at 30 ~ and 120 ~ intervals are almost as same as 

thatlof 15 ~ interval with one exception that the regions with AE<0.5 kcal 
mol of 30 ~ and 120 ~ intervals are smaller than those of 15 ~ interval. 

The averaged transformation matrix of L-Val at 15 ~ interval calculated by 

equation (3) of ref l(or equation (2) of ref 3) is 

= [ 0.369 -0.064 0.674 (i) 
<T>L-Val ]-0.161 -0.691 -0.010 

L 0.824 -0.228 -0.311 
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Table II. Theoretically Evaluated Characteristic Ratio 

a 
Polypeptides Oka et al. Miller et al. 

Val 

Ala 

Gly 

Phe 

Tyr 

Gln 

Glu 

Leu 

9.59 

8.15 b 

2 15 b 

ii 24 b 

12 33 b 

6 62 c 

7 51 c 

7 62 d 

i0.7 

8.0 

2.0 

8.9 

8.9 

8.9 

8.9 

8.9 

a 
From reference 7, and the value for a chain with n=500 

except for Gly(n=~). 

b 
From reference 1 

c 
From reference 2 

d 
From reference 3 

and calculated characteristic ratios'are 9.59, 10.79 and 10.82 for 15 ~ , 

30 ~ and 120 ~ intervals, respectively. These results indicate that char, 

acteristic ratios depend on the value of the intervals, and also the 15 ~ 

interval is a more desirable one for calculating the partition function Z. 

by equation (i) of ref 1 (or ref 3) than the 30 ~ and 120 ~ intervals as 1 

already shown in the previous works[l,3]. The calculated characteristic 

ratio of poly(L-valine) is larger than those of poly(L-alanine), poly(L- 

glutamine), poly(L-glutamic acid) and poly(L-leucine), but smaller than 

those of poly(L-phenylalanine) and poly(L-tyrosine). 

Miller and Goebal[7] treated tWo methyl groups at the y-position of 

the L-Val residue as the Cu with 1.85 ~ van der Waals radius. They 

calculated the characteristic ratio of poly(L-valine) with XI=I80 ~ and n= 

500( n is number of the virtual bond), and obtained 10.7. Their value is 

smaller than our value 12.27 with XI=I80 ~ and n= ~. As already mentioned 

above, the characteristic ratios show explicite dependence on the side- 

chain conformation X I. That is, the characteristic ratios are 5.89, 

12.27 and 18.44 for XI=165 ~ 180 ~ and -165 ~ . Therefore, their treatment 

fixing XI=I80 ~ is not adequate to calculate the characteristic ratio of 

poly(L-valine). The partition function Z. should be summed over the 
whole value of X 1 as treated in this work. l 

Theoretical results summarized in Table II indicate that the intra- 
residue side-chain/backbone interactions are very important for the char- 
acteristic ratio of polypeptide chains but the bulkiness of side-chain 

groups and the position of side-chain branching are not so important for 

the characteristic ratio; that is the overall stability of the backbone 

conformation is the essential factor affecting the characteristic ratio. 
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